

SAPEA Evidence Review Report (ERR)

Solar Radiation Modification (SRM)

Professor Johannes Quaas, Co-Chair, SRM Working Group
Professor Benjamin Sovacool, Co-Chair, SRM Working Group

Members of the working group

- Johannes Quaas, Leipzig University, Germany (co-chair)
- Benjamin Sovacool, Boston University, United States; University of Sussex, United Kingdom; Aarhus University, Denmark (co-chair)
- Roberto Cantoni, IQS School of Management, Universitat Ramón Llull, Spain
- Gabriel Chioldo, ETH Zurich, Switzerland
- Olaf Corry, University of Leeds, United Kingdom
- Ilias Fountoulakis, Academy of Athens, Greece
- Oliver Geden, German Institute for International and Security Affairs (SWP), Germany
- Marco Grasso, Università degli Studi di Milano-Bicocca, Italy
- Aarti Gupta, Wageningen University, Netherlands
- Clare Heyward, UiT: The Arctic University of Norway, Norway
- Hannele Korhonen, Finnish Meteorological Institute, Finland
- Ulrike Lohmann, ETH Zurich, Switzerland
- Axel Michaelowa, University of Zurich, Switzerland; Perspectives Climate Research, Germany
- Andreas Oschlies, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
- Florian Rabitz, Kaunas University of Technology, Lithuania; Vilnius University, Lithuania
- Herman Russchenberg, Delft University of Technology, Netherlands
- Trude Storelvmo, University of Oslo, Norway
- Katalin Sulyok, Eötvös Loránd University, Hungary
- Massimo Tavoni, Politecnico di Milano, Italy; Euromediterranean Center on Climate Change (CMCC), Italy
- Simone Tilmes, University Corporation for Atmospheric Research, United States

Executive summary			
Background	10	Modelling tools	72
Definitions	10	Satellite observations and monitoring	76
SRM technology options	11	Laboratory and field campaigns for cloud brightening	83
General rationales for SRM research and deployment	11	Chapter 5: Actor networks and interest groups, community and social perceptions, and expert perceptions	89
Objections to SRM research or deployment	12	Key messages	89
Weighing SRM risks and possible benefits	13	Actor networks and interest groups	89
Actor networks, interest groups, and stakeholder/public perceptions	14	Commercial actors	90
Considerations of ethics and justice	15	Civil society	91
Feasibility enablers and constraints of SRM	16	Scientific bodies	91
Governance dimensions, legal issues, policy design	17	Academic institutions	92
Policy options on SRM research	18	Government actors	92
Policy options on SRM deployment	20	Public and social perceptions	92
Policy options on monitoring, capacity building and tool development	21	Expert elicitation and elite perceptions	101
Chapter 1: Introduction	22	Chapter 6: Ethical and justice considerations, feasibility and required conditions	107
Chapter 2: Proposed solar radiation modification interventions	23	Key messages	107
Stratospheric aerosol injection (SAI)	31	Considerations of ethics and justice	108
Cloud brightening (CB)	32	Economic feasibility and required conditions	120
Cirrus cloud thinning (CCT)	39	Institutional feasibility and required conditions	125
Surface brightening	45	Political, security and geopolitical feasibility and required conditions	127
Space mirrors	48	Chapter 7: Governance dimensions and legal issues	132
Chapter 3: Effects, impacts, and side-effects of solar radiation modification	50	Key messages	132
Method-independent effects	52	Research governance	133
Effects from stratospheric aerosol injection	52	Deployment governance	141
Effects from cloud brightening	54	State obligations under international law and legal principles	155
Effects from cloud thinning	69	Chapter 8: Suggestions for policy options and conclusion	169
Chapter 4: Technical and scientific requirements and prerequisites	70	Key messages	169
Key messages	72	Policy options on SRM research	169
	72	Policy options on SRM deployment	171
	72	Policy options on SRM monitoring, capacity building and tool development	172
	72	Risk considerations for policy deliberation	173

Solar Radiation Modification – why consider it?

- **Definition of SRM**

- A deliberate and potentially large-scale intervention in the Earth's climatic system, with the aim of temporarily or permanently reducing some of the impacts of elevated greenhouse gas concentrations

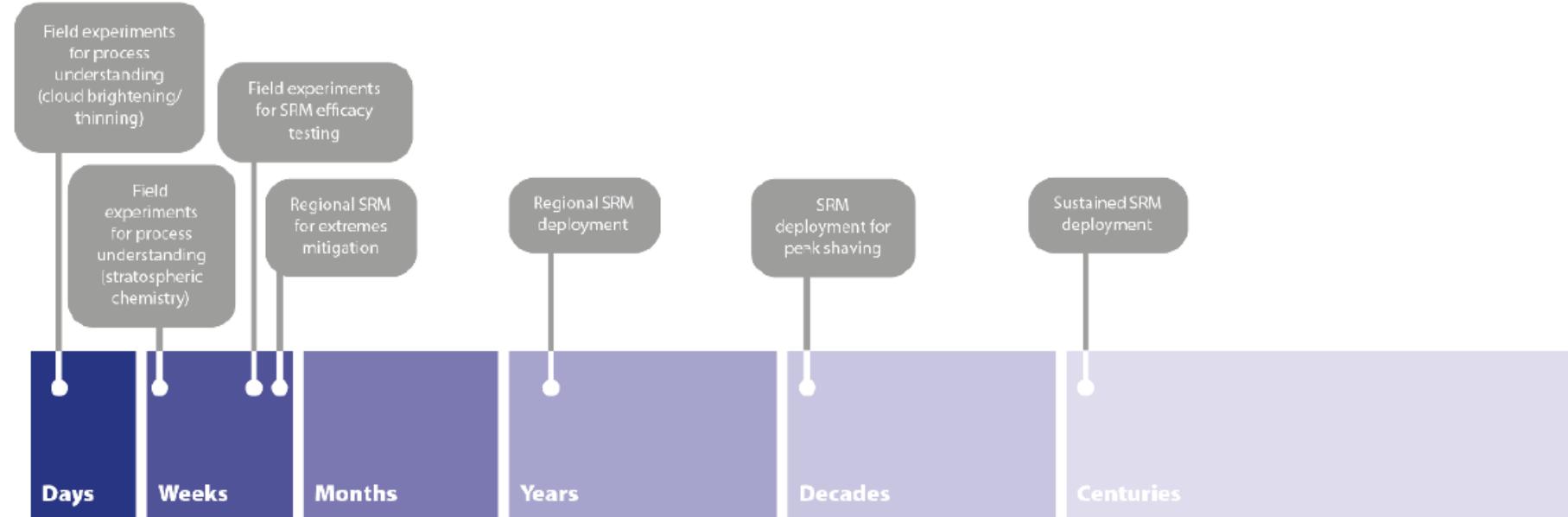
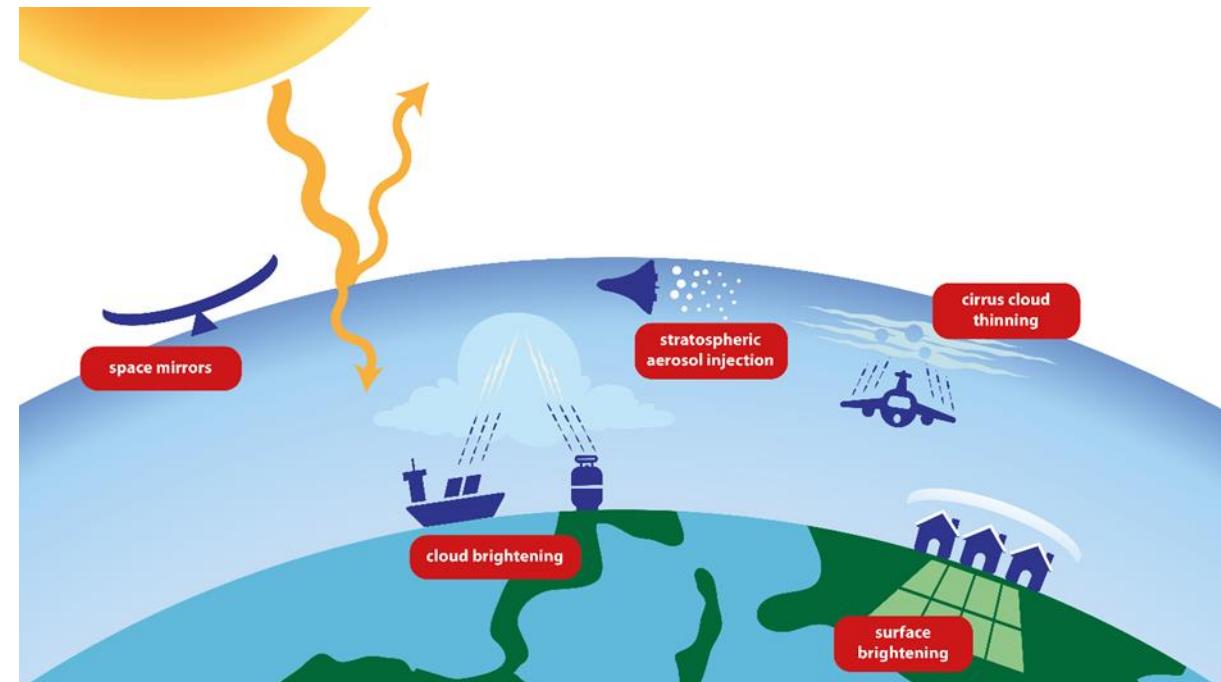



Fig. 1. Temporal scales of SRM deployment and SRM outdoor research. The temporal scales go along with spatial scales. Field experiments are typically of order tens to a few hundreds of kilometres in extent (e.g., Seidel et al., 2014). Regional deployment is at sub-continental scales (e.g., Quaas et al., 2016). Peak-shaving or sustained deployments are global in extent. The temporal scale of SRM for peak shaving assumes net-zero greenhouse gas emissions are achieved in this timeframe.

What are the technologies?

- Reflect sunlight (or more emit more infrared)
- Net cooling effect
 - Stratospheric aerosol injection (SAI)
 - Cloud brightening
 - Cirrus cloud thinning
 - Surface brightening
 - Space mirrors


What are the potential effects, impacts and side-effects of SRM?

- SRM has the potential to counteract the impacts of greenhouse gas
- SRM does not address the direct impacts of CO₂ (e.g., ocean acidification)
- SRM would have regionally diverse impacts on temperature
- SRM acts on the hydrological cycle i.e. rainfall patterns
- Multiple other effects (e.g. changes to plant growth, energy system)

What are the technical and scientific requirements and prerequisites for SRM?

- Studied so far only in climate models
 - Models not yet able to anticipate all effects and impacts
 - Some relevant processes are only coarsely integrated or still missing
- Satellite monitoring technologies to detect and quantify SRM exist
 - but some of such instruments not yet on operational European satellites.
- Technology readiness level (TRL) is very low

Risks and challenges facing SRM deployment

Method	Cooling potential (model studies)	Uncertainty of effects	Observational “analogue”	Lifetime	Regional option	Technological readiness	Remark
SAI	Global (2.1.1)	Moderate (2.1.3)	Volcanic eruptions (2.1.2)	> 2 years (2.1)	Possibly polar (2.1)	Low (2.1.4)	Additional side effects (3.2)
CB	Up to global (2.2.1)	Moderate to high (2.2.5)	Diverse tracks (2.2.2)	Weeks (2.2.1)	Yes (2.2.1)	Low (2.2.4)	
CCT	Unclear (2.3.1)	Very high (2.3.2)	Little (2.3.2)	Weeks (2.3.1)	Yes (2.3.1)	Very low (2.3.4)	Terrestrial spectrum (better compensation)
MCT	Unclear (2.3.1)	Extremely high (2.3.2)	Little (2.3.4)	Weeks (2.3.1)	Yes (2.3.1)	Extremely low (2.3.2)	
Surface brightening	At best local	Low	Land cover diversity	Decades	Only local	High	No option for global cooling
Space mirrors	Global	Low	None	Decades to centuries	No	Virtually zero	

Who are the actors and networks, and what are stakeholder perceptions of SRM?

- Variety of actor coalitions that support SRM, oppose it or are ambivalent
 - State actors such as governments but also commercial actors, civil society groups, scientific bodies, and academic institutions
- The public is largely unfamiliar with SRM options
 - Preferences appear to be strongly context dependent, particularly by perceptions and experiences of climate change, and strongly informed by values
- Perceptions held by experts and those involved in decisions to fund research, implement policy, or shape deployment outcomes outline rationales in favour of SRM but also several points of concern



Figure 5. Public familiarity with SRM options. The left panel based on Baum et al (2024), 1=never heard of it, 5=very familiar. The right panel shows awareness about Stratospheric Aerosol Injection in public perceptions surveys in Germany 2012, 2013, 2015, and 2017; all surveys use the same question and response format after study-specific descriptions of SAI. For description of data collection see: 2012: Merk et al (2016); 2013: Braun et al (2018); 2015: unpublished data description of data collection see Merk et al (2016); 2017: unpublished data (Merk, Baatz & Rehdanz, in prep) description of data collection see survey 1 in Merk et al (2019).

Authors	Year	Country focus	Technology (only SRM methods listed)	Methods
Shepherd	2009	UK	Geoengineering in general	Four focus groups + opinion poll (1000 respondents) + specialist workshop
Ipsos MORI (NERC)	2010	UK		Workshops in 3 UK cities (85 participants) + final event; discussion groups; online survey (65 respondents); open access events
Bellamy and Hulme	2011	UK	Geoengineering in general	Email questionnaire (287 participants - students) + focus groups (15 participants - students)
Mercer et al.	2011	UK, US, Canada	SRM in general	Survey (3105 participants)
Borick and Rabe	2012	US	SRM in general	Survey (887 participants)
Bostrom et al.	2012	Austria, Bangladesh, Germany, Norway, USA	Finland, Stratospheric aerosol injection	Survey (664 participants - economics undergraduate students)
Pidgeon et al.	2012	UK	Geoengineering in general	Semi-structured interviews (53 participants); Survey (1822 participants)
Hiller and Renn	2012	Germany	Geoengineering in general	International media analysis, 2008-2010
Corner et al.	2013	UK	Geoengineering in general (including Stratospheric aerosol injection)	Deliberative workshops in 4 UK cities (11x4 participants)
Pidgeon et al.	2013	UK	Stratospheric aerosol injection	Deliberative workshops in 3 UK cities (32 participants, in three groups)
Macnaghten and Szerszynski	2013	UK	SRM in general	Deliberative focus groups in 3 UK cities (around 50 participants, in seven groups)
Corner and Pidgeon	2014	UK	Geoengineering in general	Survey experiment: three treatment groups (610 participants)
Scheer and Renn	2014	Germany	Geoengineering in general	Literature review and Group Delphi workshop for experts
Wright et al.	2014	New Zealand, Australia (quantitative)	Stratospheric aerosol injection; Cloud brightening; Mirrors in space	Semi-structured interviews (30 participants) and quantitative brand image analysis (2028 participants)
Ameling and Funke	2015	Germany	Geoengineering in general (interview) and	Semi-structured interviews and budget-allocation task (98 participants - students)

The main themes that emerge from public perception studies (see Table 1) on SRM are as follows:

1) Moral hazard: the possibility that the development and implementation of technological measures to reduce the impact of climate change may generate a perceived permission structure for citizens, industries, and governments not to have to reduce emissions as much. Evidence of moral hazard is empirically very challenging to generate. Existing analyses are inconclusive as some studies observe some moral hazard effects, whereas others find no results or even an increase in support for emissions mitigation after exposure to the notion of SRM (Corner and Pidgeon 2014; Visschers et al. 2017; Amelung and Funke 2015; McLaren et al. 2016; Merk et al. 2016, 2019; Raimi et al. 2019; Fenn et al. 2023; Baum et al. 2024b). (See also mitigation deterrence below).

2) 'Messing with nature': the perception that human beings may, by intervening or tampering with climate processes be acting in contravention to the natural order, with accompanying expected consequences from the natural elements and/or religious connotations. While many studies observe 'messing with nature' sentiments, some also find that with closer interaction, SRM can be viewed to remedy humanity's degrading impact on nature (Mercer et al. 2011; Corner et al. 2013; Corner and Pidgeon 2015; Wibeck et al. 2015, 2017; Asayama et al. 2017; Visschers et al. 2017; Buck 2018; Carr and Yung 2018; Jobin and Siegrist 2020; Klaus et al. 2020; Raimi et al. 2020; Carvalho and Riquito 2022; Bölsen et al. 2023; Fenn et al. 2023; Baum et al. 2024a, 2024b).

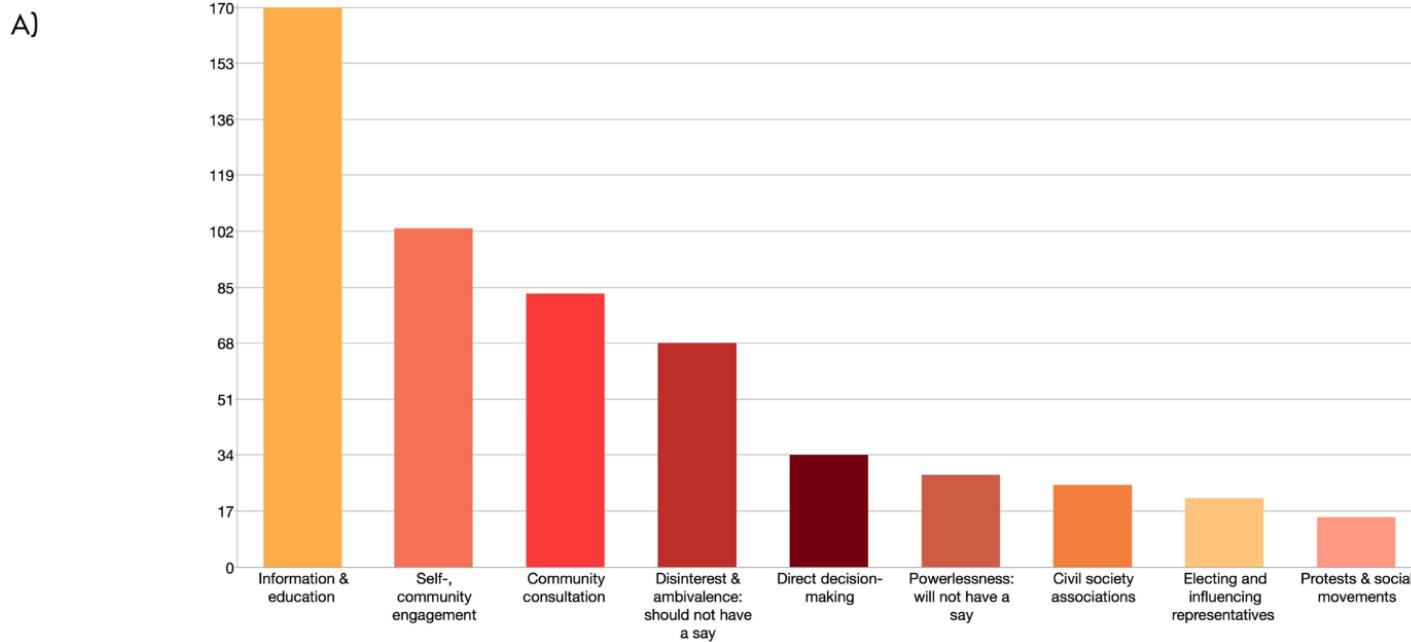
3) Unnaturalness of SRM techniques: related to the previous point, aversion to those techniques perceived to be more "unnatural", with this factor an important predictor of the potential acceptability of SRM. While initial reactions tend to view SRM as unnatural, this effect can vary with framing effects (e.g. relating to the Anthropocene or SRM seen as counteracting a reduction in bunker fuel emissions (Mercer et al. 2011; Corner et al. 2013; Corner and Pidgeon 2014, 2015; Bellamy et al. 2016; Raimi et al. 2020; Mahajan et al. 2019; Bölsen et al. 2023; Baum et al. 2024b).

The main themes that emerge from public perception studies (see Table 1) on SRM are as follows:

4) Climate change harms and exposure: the degree to which individuals or groups perceived climate change to have a severe impact on their lives, or were directly harmed by climate change or natural disasters, has a crucial influence on support for SRM techniques and more support for SRM research has been found in Global South countries (Mercer et al. 2011; Borick and Rabe 2012; Bostrom et al. 2012; Pidgeon et al. 2013; Merk et al. 2015, 2016; Gregory et al. 2016; Visschers et al. 2017; Braun et al. 2018b; Sugiyama, Asayama, and Kosugi, 2020; Sugiyama, Asayama, and Kosugi, 2020; Raimi et al. 2020; Jobin and Siegrist 2020; Klaus et al. 2020; Cherry et al. 2021; Bölsen et al. 2023; Rosenthal et al. 2023; Baum et al. 2024a, 2024b; Hussain et al. 2024)

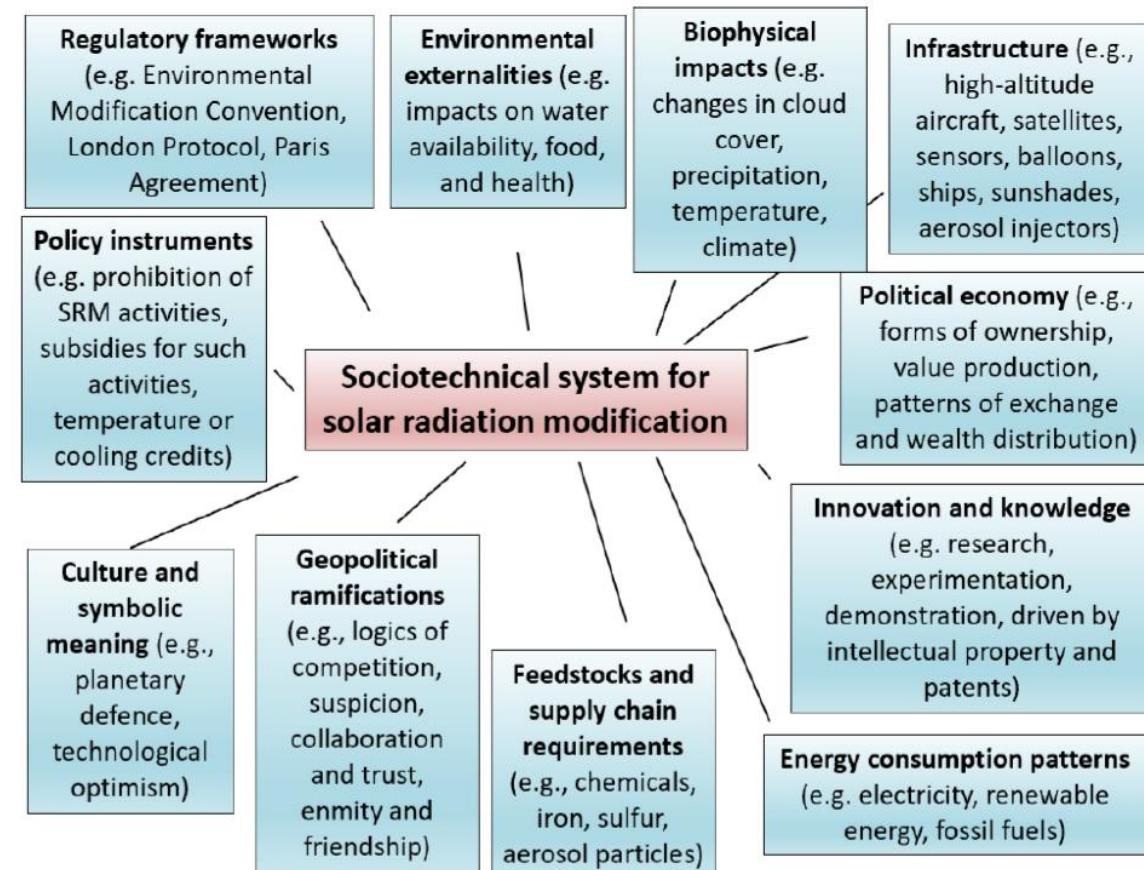
5) Less preferable than other climate solutions: there is consistent evidence of the public assigning SRM approaches, most of all stratospheric aerosol injection, less support and viewing them to have greater risks versus benefits than carbon dioxide removal and, especially, emissions reduction approaches like renewable energy, energy efficiency and energy conservation (Bostrom et al. 2012; Wright et al. 2014; Amelung and Funke 2015; Bellamy et al. 2016; Merk et al. 2019b; Carlisle et al. 2020, 2022; Jobin and Siegrist 2020; Bellamy 2023; Müller-Hansen et al. 2023; Baum et al 2024a).

6) Need to establish fair regulation/need to distribute benefits and costs fairly: among those who do not oppose SRM on principle, there emerges a call for the establishment of precise regulation delimiting its use, as well as questions over the extent to which this would be feasible (Macnaghten and Szerszynski 2013; Bellamy et al. 2016, 2017; Asayama et al. 2017; Buck 2018; Sugiyama et al. 2020; Hussain et al. 2024). Intergenerational fairness has long been a consideration with calls to ensure future generations are properly equipped to take decisions on the potential use of SRM (Betz, 2012; Goeschl, Heyen, and Moreno-Cruz, 2013; Quaas et al. 2017).


The main themes that emerge from public perception studies (see Table 1) on SRM are as follows:

7) Need to inform and consult citizens prior to development and deployment: connected to the previous point, respondents express the need for choices about these technologies to be made with the involvement and consent of citizens, both out of justice considerations and in accordance with democratic principles (Macnaghten and Szerszynski 2013; Bellamy et al. 2016, 2017; McLaren et al. 2016; Asayama et al. 2017; Buck 2018; Sugiyama et al. 2020; Baum et al. 2024a, 2024b) .

8) Conspiracy thinking: though a smaller strand in the literature, there are established connections between discourse and discussions on SRM in the public sphere and prevailing conspiracies (notably, on chemtrails), with this revealed at the individual level through surveys (Mercer et al. 2011; Tingley and Wagner 2017; Bölsen et al. 2022) and in a more general manner through social media analysis (Debnath et al. 2023; Müller-Hansen et al. 2023).


How to involve the public? Recognize 'ecologies of participation'

- Fritz et al. (2024) conducted 44 focus groups in 22 countries to ask a representative sample of the public their preference for community governance involving SRM options such as SAI, MCB and space shields
- They noted preferences across an entire ecology of participation including self-governance, having petitions, and supporting citizens assemblies and plebiscites.

Risk considerations and future work

- Moral hazard – framing SRM as a ‘solution’ to climate change
- Slippery slope – lock-in or path-dependency
- Regional inequalities
- Prediction uncertainty
- Pre-existing legal commitments
- Socio-technical systems dynamics

